ABOUT ME

-

Today
-
Yesterday
-
Total
-
  • Cheat sheet for exam
    Campus Life 2025. 4. 19. 07:22

    이 아이들을 A4 1장에 어떻게 잘 우겨 넣을 것인가.. 돋보기 챙겨가야 하는 거 아냐..? -_- 








    * Linear classifier: One template per class
    * Neural net: first layer is bank of templates; Second layer recombines templates
    - Can use different templates to cover multiple modes of a class!

    - “Distributed representation”: Most templates not interpretable!







    First-layer conv filters: local image templates (Often learns oriented edges, opposing colors)

    For convolution with kernel size K, each element in the output depends on a K x K receptive field in the input

    Each successive convolution adds K – 1 to the receptive field size. With L layers the receptive field size is 1 + L * (K – 1)

     

    Input volume: 3 x 32 x 32

    10 5x5 filters with stride 1, pad 2

     

    Output volume size: 10 x 32 x 32
    Number of learnable parameters: 760
    Number of multiply-add operations: 768,000
    10*32*32 = 10,240 outputs; each output is the inner product 
    of two 3x5x5 tensors (75 elems); total = 75*10240 = 768K




     


    Most of the memory usage is in the early convolution layers

    Nearly all parameters are in the fully-connected layers

    Most floating-point ops occur in the convolution layers


     




     






     

    'Campus Life' 카테고리의 다른 글

    과한 욕심은 화를 부른다  (0) 2025.04.20
    질문 잘 하는 귀여운 친구들  (0) 2025.04.19
    희망고문  (0) 2025.04.15
    assignment 3 completed  (0) 2025.04.05
    진짜 멘붕이다  (0) 2025.04.04
Designed by Tistory.