-
Sanity checkPaper Writing 1/Experiments 2024. 10. 27. 16:17
< supervised long-term forecasting results of my base model* >
* base model: GPT-2 without injecting any additional information
The backbone model can be any LLM, but I used GPT-2 with 6 layers as default for simplicity.
I may conduct an ablation study on different LLM model variants and sizes. Several previous studies have demonstrated that the scaling law also applies to time-series forecasting in relation to the number of model parameters and the size of the training corpus.
content length 512 / forecasting horizon 96
1) ETTh1 : training epochs 10
512_96_MyModel_ETTh1_sl512_pl96_dm32_nh8_df128_0
test on the ETTh1 dataset: mse: 0.3996824, mae: 0.42199792) ETTm1: training epochs 10
512_96_MyModel_ETTm1_sl512_pl96_dm32_nh8_df128_0
test on the ETTm1 dataset: mse: 0.3175505, mae: 0.36267453) Weather : training epochs 1
512_96_MyModel_Weather_sl512_pl96_dm32_nh8_df32_0
test on the weather dataset: mse: 0.1589350, mae: 0.21116524) Electricity: training epochs 1
512_96_MyModel_ ECL _sl512_pl96_dm32_nh8_df32_0
test on the electricity dataset: mse: 0.1420454 , mae: 0.2483649
Some visualization (cherry picking)
1) ETTh1
2) ETTm1
3) Weather
'Paper Writing 1 > Experiments' 카테고리의 다른 글
멘붕 (0) 2024.10.28 [breaktime] LLM's pattern recognition (0) 2024.10.28 Glimpse of dataset - (2) real-data (0) 2024.10.27 Glimpse of dataset - (1) synthetic time series generation (0) 2024.10.25 issue #1 (0) 2024.10.24