Research/NLP_CMU
-
Fine-tuning & Instruction TuningResearch/NLP_CMU 2024. 7. 6. 07:50
※ Summaries after taking 「Advanced NLP - Carnegie Mellon University」 coursehttps://www.youtube.com/watch?v=KLJ3EEo8aPU&list=PL8PYTP1V4I8DZprnWryM4nR8IZl1ZXDjg&index=8https://phontron.com/class/anlp2024/assets/slides/anlp-08-instructiontuning.pdfYou have some shared parameters between the models that are trained on all tasks. If you're just training a big language model then you'll probably be sh..
-
PromptingResearch/NLP_CMU 2024. 7. 5. 16:05
※ Summaries after taking 「Advanced NLP - Carnegie Mellon University」 coursehttps://www.youtube.com/watch?v=T1YrTbTkUb4&list=PL8PYTP1V4I8DZprnWryM4nR8IZl1ZXDjg&index=7https://phontron.com/class/anlp2024/assets/slides/anlp-07-prompting.pdf Prompting is a new paradigm as of a few years ago with interacting with models. It's now kind of the standard in doing so and basically what we do is we encoura..
-
Generation AlgorithmsResearch/NLP_CMU 2024. 7. 5. 11:43
※ Summaries after taking 「Advanced NLP - Carnegie Mellon University」 coursehttps://www.youtube.com/watch?v=96MMXDA7F74&list=PL8PYTP1V4I8DZprnWryM4nR8IZl1ZXDjg&index=6https://phontron.com/class/anlp2024/assets/slides/anlp-06-generation.pdfA model M gives you a probability distribution over all tokens in its vocabulary to predict what token you would output next. Given some input X and everything ..
-
TransformersResearch/NLP_CMU 2024. 7. 5. 09:42
※ Summaries after taking 「Advanced NLP - Carnegie Mellon University」 coursehttps://www.youtube.com/watch?v=QkGwxtALTLU&list=PL8PYTP1V4I8DZprnWryM4nR8IZl1ZXDjg&index=5https://phontron.com/class/anlp2024/assets/slides/anlp-05-transformers.pdf Residual Connection allows f to learn the "difference" from the input - instead of learning how the input should be mapped into the output, you learn what di..